
AGILE
Methodology

BY
VISHWANATH

ARABATI

CORPORATE 
TRAINER

DELIVERY INCREMENTALY….. INSTEAD OF ALL AT ONCE



Topic

History of Agile Methodologies

Agile and Lean Software Development

Basics and Fundamentals

Extreme Programming, Scrum

Agile and Scrum Principles, Agile Manifesto

Twelve Practices of XP

Agile Estimation &amp

Planning

Agile Requirements

User Stories, Backlog Management

Agile Architecture

Tracking Agile Projects.

Lean Software Development

Agile Risk management

Agile Project Tools

Agile Project Tools

Continuous Integration (CI).

Agile Testing

Scaling Agile for Large Projects

Scaling Agile for Large Projects.



AGILE

Agile

It originated from the Agile Manifesto in 2001.

The focus is on customer collaboration and iterative 
delivery.

Scrum, Extreme Programming (XP), Iterative 
Development.

Flexible and adaptive to changes as they arise.

It involves frequent reassessment and adaptation in 
short cycles.

It involves continuous collaboration and feedback 
from customers.

VISHWANATH ARABATI - Corporate Trainer



SDLC

 Without using an exact life cycle model, the development of a software 
product would not be in a systematic and disciplined manner.

 developing a software product, there must be a clear understanding 
among team representative about when and what to do.

 describes entry and exit criteria for each phase. 

 A phase can begin only if its stage-entry criteria have been fulfilled.

 without a software life cycle model, the entry and exit criteria for a stage 
cannot be recognized. 

 Software Development Life Cycle (SDLC)

 pictorial and diagrammatic representation of the software life cycle.

 represents all the methods required to make a software product transit 
through its life cycle stages.

 maps the various activities performed on a software product from its 
inception to retirement.

VISHWANATH ARABATI - Corporate Trainer



SDLC

VISHWANATH ARABATI - Corporate Trainer



SDLC

 Stage1: Planning and requirement analysis
 senior members of the team perform it with inputs from all the 

stakeholders and domain experts or SMEs in the industry

 Stage2: Defining Requirements
 document the software requirements and get them accepted from 

the project stakeholders.

 "SRS"- Software Requirement Specification document which contains 
all the product requirements to be constructed and developed 
during the project life cycle.

 Stage3: Designing the Software
 requirements, analysis, and design of the software project

VISHWANATH ARABATI - Corporate Trainer



SDLC

 Stage4: Developing the project
 development begins, and the programming is built.

 Stage5: Testing
 During this stage, unit testing, integration testing, system testing, 

USER (UAT) acceptance testing are done.

 Stage6: Deployment
 Once the software is certified, and no bugs or errors are stated, then 

it is deployed.

 Stage7: Maintenance
 Once when the client starts using the developed systems, then the 

real issues come up and requirements to be solved from time to 
time.

VISHWANATH ARABATI - Corporate Trainer



SDLC

 Flexibility
 More flexible than other methodologies (sucha as Waterfall which 

has a fixed timeline)

 Agile's schedule adapts as the project progresses. 

 Collaboration
 Emphasizes collaboration between self-organizing, cross-functional 

teams. 

 Reflection
 After each sprint, teams reflect on what could be improved

 adjust their strategy for the next sprint

VISHWANATH ARABATI - Corporate Trainer



SDLC

 (SDLC) is a spiritual model used in project management that defines the 
stages 

 include in an information system development project, from an initial 
feasibility study to the maintenance of the completed application.

VISHWANATH ARABATI - Corporate Trainer



MODELS

 WATERFALL MODEL

 RAD MODEL

 V-MODEL

 INCREMENTAL MODEL

 SPIRAL MODEL

 INTERATIVE MODEL

 BIGBAND MODEL

 AGILE MODEL

VISHWANATH ARABATI - Corporate Trainer



WATERFALL MODEL

 waterfall is a universally accepted SDLC model.

 waterfall model is a continuous software development model 

 Phases and steps of requirements analysis, design, implementation, 
testing (validation), integration, and maintenance.

 1. Requirements analysis and specification phase:

 large document called Software Requirement Specification 
(SRS) document is created which contained a detailed description of what 
the system will do in the common language.

 2. Design Phase:

 overall software architecture together with high level and detailed design. 
All this work is documented as a Software Design Document (SDD).

VISHWANATH ARABATI - Corporate Trainer



WATERFALL MODEL

 3. Implementation and unit testing: During this phase, design is 
implemented. If the SDD is complete, the implementation or coding phase 
proceeds smoothly, because all the information needed by software 
developers is contained in the SDD.

 4. Integration and System Testing: This phase is highly crucial as the

quality of the end product is determined by the effectiveness of the

testing carried out. The better output will lead to satisfied customers,

lower maintenance costs, and accurate results. Unit testing determines

the efficiency of individual modules. However, in this phase, the modules

are tested for their interactions with each other and with the system.

 5. Operation and maintenance phase: Maintenance is the task performed

by every user once the software has been delivered to the customer,

installed, and operational.

VISHWANATH ARABATI - Corporate Trainer



When to use SDLC 
Waterfall Model?

 Some Circumstances where the use of the Waterfall model is most suited

are:

• When the requirements are constant and not changed regularly.

• A project is short

• The situation is calm

• Where the tools and technology used is consistent and is not changing

• When resources are well prepared and are available to use.

VISHWANATH ARABATI - Corporate Trainer



Advantages of 
Waterfall model

• This model is simple to implement also the number of resources that are

required for it is minimal.

• The requirements are simple and explicitly declared; they remain

unchanged during the entire project development.

• The start and end points for each phase is fixed, which makes it easy to

cover progress.

• The release date for the complete product, as well as its final cost, can

be determined before development.

• It gives easy to control and clarity for the customer due to a strict

reporting system.

VISHWANATH ARABATI - Corporate Trainer



Disadvantages of 
Waterfall model

• In this model, the risk factor is higher, so this model is not suitable for

more significant and complex projects.

• This model cannot accept the changes in requirements during

development.

• It becomes tough to go back to the phase. For example, if the application

has now shifted to the coding phase, and there is a change in

requirement, It becomes tough to go back and change it.

• Since the testing done at a later stage, it does not allow identifying the

challenges and risks in the earlier phase, so the risk reduction strategy is

difficult to prepare.

VISHWANATH ARABATI - Corporate Trainer



• Definition

 Agile methodology is a project management framework.

 This breaks down the projects into phases, or sprints.

 This emphasizes continuous improvement and collaboration.

 It's an iterative process which involves
 planning,

 execution,

 and evaluation.



VISHWANATH ARABATI - Corporate Trainer



AGILE 

 Individuals and interactions: 

 Working software

 Customer collaboration

 Responding to change

VISHWANATH ARABATI - Corporate Trainer



AGILE Life Cycle 

VISHWANATH ARABATI - Corporate Trainer



Requirement Gathering

• In this stage, the project team identifies and documents the needs and 
expectations of various stakeholders, including clients, users, and subject 
matter experts.

• It involves defining the project’s scope, objectives, and requirements.

• Establishing a budget and schedule.

• Creating a project plan and allocating resources.

VISHWANATH ARABATI - Corporate Trainer



2. Design

• Developing a high-level system architecture.

• Creating detailed specifications, which include data structures, algorithms, 
and interfaces.

• Planning for the software’s user interface.

VISHWANATH ARABATI - Corporate Trainer



3. Development 
(Coding)

 Writing the actual code for the software. Conducting unit testing to verify 
the functionality of individual components.

VISHWANATH ARABATI - Corporate Trainer



4. Testing

 This phase involves several types of testing:

1.Integration Testing: Ensuring that different components work together.

2.System Testing: Testing the entire system as a whole.

3.User Acceptance Testing: Confirming that the software meets user 
requirements.

4.Performance Testing: Assessing the system’s speed, scalability, and 
stability.

VISHWANATH ARABATI - Corporate Trainer



5. Deployment

1.Deploying the software to a production environment.

2.Put the software into the real world where people can use it.

3.Make sure it works smoothly in the real world.

4.Providing training and support for end-users.

VISHWANATH ARABATI - Corporate Trainer



6. Review 
(Maintenance)

1.Addressing and resolving any issues that may arise after deployment.

2.Releasing updates and patches to enhance the software and address 
problems.

VISHWANATH ARABATI - Corporate Trainer



 History of Agile

 • In 1957, people started figuring out new ways to build computer programs. They 
wanted to make the process better over time, so they came up with iterative and 
incremental methods.

 • In the 1970s, people started using adaptive software development and 
evolutionary project management. This means they were adjusting and evolving how they 
built software.

 • In the 1990s, there was a big change. Some people didn’t like the strict and 
super-planned ways of doing things in software development. They called these old ways 
“waterfall.” So, in response, lighter and more flexible methods showed up.

 These included:

1. Rapid Application Development (RAD) in 1991.

2. Unified Process (UP), Dynamic Systems Development Method (DSDM) in 1994.

3. Scrum in 1995.

4. Crystal Clear and Extreme Programming (XP) in 1996.

5. Feature-Driven Development (FDD) in 1997.

 Even though these came before the official “Agile Manifesto”, we now call them agile 
software development methods.

VISHWANATH ARABATI - Corporate Trainer



 In 2005, Alistair Cockburn and Jim Highsmith added more ideas about 
managing projects, creating the PM Declaration of Interdependence.

 Then, in 2009, a group, including Robert C. Martin, added principles about 
software development. They called it the Software Craftsmanship 
Manifesto, focusing on being professional and skilled.

 In 2011, the Agile Alliance, a group of agile enthusiasts, made the Guide to 
Agile Practices (later called Agile Glossary). This was like a shared 
document where agile people from around

 the world put down their ideas, terms, and guidelines. It’s a bit like a 
dictionary for how to do agile things.

VISHWANATH ARABATI - Corporate Trainer



 What is LSD?

 Lean Software Development (LSD) is an approach derived from lean 
manufacturing principles aimed at optimizing efficiency and minimizing 
waste in the software development process.



 Prevent Defects: It integrates quality assurance throughout the development 
process to prevent defects.

 Eliminate Waste: It focuses on activities that add value to the customer and 
eliminates those activities that do not add value.

 Fast Delivery: Reduces cycle time to deliver software quickly and respond 
to feedback and changing requirements rapidly.

 Delay Decisions: Delay decisions until they can be made based on facts.

VISHWANATH ARABATI - Corporate Trainer



Seven Principles of LSD

There are 7 established lean principles that come with a set of tactics, practices, 
and processes that build more efficient software products:

1. Eliminating the Waste

To identify and eliminate wastes e.g. unnecessary code, delay in processes, 
inefficient communication, issues with quality, data duplication, more tasks in the 
log than completed, etc. regular meetings are held by Project Managers. This 
allows team members to point out faults and suggest changes in the next turn.

2. Fast Delivery

Previously long-time planning used to be the key to success in business, but with 
time, it has been found that engineers spend too much time on building complex 
systems with unwanted features. So they came up with an MVP strategy which 
resulted in building products quickly that included a little functionality and 
launching the product to market and seeing the reaction. Such an approach 
allows them to enhance the product based on customer feedback.

3. Amplify Learning

Learning is improved through ample code reviewing and meetings that are cross-
team applicable. It is also ensured that particular knowledge isn’t accumulated 
by one engineer who’s writing a particular piece of code so paired programming 
is used.

VISHWANATH ARABATI - Corporate Trainer



4. Builds Quality

LSD is all about preventing waste and keeping an eye on not sacrificing 
quality. Developers often apply test- driven programming to examine the 
code before it is written. Quality can also be gained by getting constant 
feedback from team members and project managers.

5. Respect Teamwork

LSD focuses on empowering team members, rather than controlling them. 
Setting up a collaborative atmosphere, keeping perfect balance when there 
are short deadlines and immense workload. This method becomes very 
important when new members join a well-established team.

6. Delay the Commitment

In traditional project management, it often happens when you make your 
application and it turns out to be completely unfit for the market. LSD 
method recognizes this threat and makes room for improvement by

postponing irreversible decisions until all experiment is done. This 
methodology always constructs software as flexible, so new knowledge is 
available and engineers can make improvements.

VISHWANATH ARABATI - Corporate Trainer



7. Optimizing the Whole System

Lean’s principle allows managers to break an issue into small constituent 
parts to optimize the team’s workflow, create unity among members, and 
inspire a sense of shared responsibility which results in enhancing the 
team’s performance.

VISHWANATH ARABATI - Corporate Trainer



LSD Process

Here is the overview of the lean software development process:

1. Identify Value: Understand the customer values and focus on 
delivering features that meet these needs.

2. Map the Value Stream: This involves mapping out the entire software 
development process to identify and eliminate wasteful activities that do not add 
value.

3. Create Flow: Ensure a smooth and continuous flow of work by 
minimizing delays and interruptions.

4. Establish Pull: Develop features based on customer demand rather 
than pushing features through the process.

5. Seek Perfection: Regularly review and refine the development process. 
Always encourage the team members to identify the areas of improvement and 
implement changes iteratively.

6. Build Quality In: Use practices such as test-driven development (TDD) 
and continuous integration to integrate quality assurance throughout the 
development process.

7. Empower Teams: Empower development teams by providing them 
with the necessary tools, resources, and autonomy to make decisions.

VISHWANATH ARABATI - Corporate Trainer



7. Optimizing the Whole System 

Lean’s principle allows managers to break an issue into small constituent parts to optimize the team’s 

workflow, create unity among members, and inspire a sense of shared responsibility which results in 

enhancing the team’s performance. 

LSD Process 

Here is the overview of the lean software development process: 

1. Identify Value: Understand the customer values and focus on delivering features that meet these 

needs. 

2. Map the Value Stream: This involves mapping out the entire software development process to 

identify and eliminate wasteful activities that do not add value. 

3. Create Flow: Ensure a smooth and continuous flow of work by minimizing delays and 

interruptions. 

4. Establish Pull: Develop features based on customer demand rather than pushing features 

through the process. 

5. Seek Perfection: Regularly review and refine the development process. Always encourage the 

team members to identify the areas of improvement and implement changes iteratively. 

6. Build Quality In: Use practices such as test-driven development (TDD) and continuous 

integration to integrate quality assurance throughout the development process. 

7. Empower Teams: Empower development teams by providing them with the necessary tools, 

resources, and autonomy to make decisions. 
LSD vs Agile 

Aspect Lean Software Development (LSD) Agile 

 

Origin 

It originated from lean manufacturing, 

especially the Toyota Production System. 

It originated from the Agile Manifesto 

in 2001. 

 

Focus 

The focus is on waste elimination and value 

optimization. 

The focus is on customer collaboration 

and iterative delivery. 

Process and 

Practices 

Kanban, Value Stream Mapping, Continuous 

Improvement (Kaizen). 

Scrum, Extreme Programming (XP), 

Iterative Development. 

 

Decision Making 

Delays decisions until necessary and are 

based on facts. 

Flexible and adaptive to changes as 

they arise. 

Iteration and 

Feedback 

It involves continuous improvement through 

regular feedback. 

It involves frequent reassessment and 

adaptation in short cycles. 

Customer 

Involvement 

It involves understanding and delivering 

customer value continuously. 

It involves continuous collaboration 

and feedback from customers. 

 

VISHWANATH ARABATI - Corporate Trainer



Benefits of LSD

Here are some key benefits of LSD that help organizations to improve their 
software development processes and outcomes:

1. Increased Efficiency: LSD reduces delays and inefficiencies by 
identifying and eliminating non-value-adding activities.

2. Higher Quality: It integrates quality assurance throughout the 
development process, thus preventing defects and ensuring quality 
products.

3. Faster Delivery: Shorter development cycles allow for quicker 
release of features and updates, thus meeting customer demands more 
rapidly.

4. Adaptability: Delaying decisions until they are necessary and are 
based on facts, allowing teams to adapt to changes and new information.

5. Enhanced Collaboration: Engages customers throughout the 
development process, ensuring that their needs and feedback are 
continuously addressed.

VISHWANATH ARABATI - Corporate Trainer



Limitations of LSD

1. Cultural Resistance: Implementing LSD requires a significant 
cultural shift and if there is resistance to change from team members and 
management then it can hinder its adoption and effectiveness.

2. Learning Curve: There is a steep learning curve associated with 
understanding and applying lean principles and practices effectively.

3. Requires Strong Leadership: Successful implementation of LSD 
requires strong and committed leadership to guide the transition.

4. Difficulty in Measuring Waste: In LSD, determining waste is 
subjective and challenging. It requires a deep understanding of processes 
and value streams.

5. Resource Intensive: Implementing LSD requires an initial 
investment in training, tools, and process redesign. This can be significant.

VISHWANATH ARABATI - Corporate Trainer



AGILE

 Customer satisfaction by early and continuous delivery of software

 Changing requirements

 Working software is delivered frequently

 Close, daily cooperation between business people and developers

 Applications built around motivated individuals, who should be trusted.

 F2F conversation 

 Sustainable development, able to maintain a constant pace

 Light weighted methodology

 Small to medium team size 

VISHWANATH ARABATI - Corporate Trainer



AGILE

 SERIALIZED PROCESS: Iterative approach with tasks broken into small 
increments.

 Planning far in advance: plan for what we know and we have left sufficient 
allowance in our plans for what we don’t know.

 Lack of Visibility: Teams don’t realize they are behind schedule.

 Project timeline: Allows the development effort to get feedback from the 
customer throughout.

 Static requirements: scope is never closed; con - requirement priorities by 
the business.

VISHWANATH ARABATI - Corporate Trainer



AGILE

VISHWANATH ARABATI - Corporate Trainer



AGILE

VISHWANATH ARABATI - Corporate Trainer

Agile benefits Agile challenges

Ability to manage changing priorities
Organisations can resist change in 
adoption

Increased project visibility Teams may use inconsistent practises

Improved business/IT alignment
Needs support of leadership and 
management

Delivery speed/time to market
Organisational culture can be at odds 
with agile values

Project risk reduction & predictability



Advantage(Pros) of 
Agile Method:

1. Frequent Delivery

2. Face-to-Face Communication with clients.

3. Efficient design and fulfils the business requirement.

4. Anytime changes are acceptable.

5. It reduces total development time.

VISHWANATH ARABATI - Corporate Trainer



Disadvantages(Cons) of 
Agile Model:

1. Due to the shortage of formal documents, it creates confusion and

crucial decisions taken throughout various phases can be misinterpreted

at any time by different team members.

2. Due to the lack of proper documentation, once the project completes

and the developers allotted to another project, maintenance of the

finished project can become a difficulty.

VISHWANATH ARABATI - Corporate Trainer



Four Core Values

Individuals and interactions over processes and tools

Agile emphasizes the importance of people and their interactions as the primary drivers of project 
success. Effective communication, collaboration, and teamwork are vital in Agile environments,
fostering a sense of ownership and responsibility among team members.

Working software over comprehensive documentation

While documentation remains essential, Agile prioritizes the delivery of working software that
meets customer needs. Frequent and incremental releases allow stakeholders to see tangible 
progress and provide valuable feedback throughout the development process.

Customer collaboration over contract negotiation

Agile encourages close collaboration with customers and end-users. This customer-centric
approach ensures that the software being developed aligns with their evolving needs, increasing 
the likelihood of delivering a product that satisfies their requirements.

Responding to change over following a plan

Agile acknowledges that change is inevitable in software development. Rather than rigidly
adhering to a fixed plan, Agile teams embrace change and view it as an opportunity for 
improvement.

Frequent iterations enable teams to adapt to new information and feedback, fostering a more 
responsive development process. Agile software development thrives on change and adaptability,
making flexibility the heartbeat of its success.

VISHWANATH ARABATI - Corporate Trainer



Twelve Agile Development Principles:

the 12 principles from the Agile Manifesto :

1. Prioritize satisfying the customer through early and continuous 
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile 
processes harness change for the customer's competitive advantage.

3. Deliver working software frequently, with a preference for shorter 
timescales.

4. Collaborate closely between business people and developers 
throughout the project.

5. Build projects around motivated individuals. Give them the 
environment and support they need, and trust them to get the job done.

VISHWANATH ARABATI - Corporate Trainer



6. Use face-to-face communication whenever possible for effective information 
sharing.

7. Measure progress primarily through working software.

8. Maintain a sustainable pace of work for the development team. Continuous 
work is sustainable work.

9. Focus on technical excellence and good design to enhance agility.

10. Keep things simple and maximize the amount of work not done (avoid 
unnecessary tasks).

11. Allow self-organizing teams to make decisions on how to accomplish their work.

12. Reflect at regular intervals on team effectiveness and adjust behavior 
accordingly. 

VISHWANATH ARABATI - Corporate Trainer



AGILE METHODOLOGY

 Agile means swift or versatile.

 development approach based on iterative development

 break tasks into smaller iterations.

 parts do not directly involve long term planning.

 Plans regarding the number of iterations, the duration and the scope of 

each iteration are clearly defined in advance.

 Each iteration is considered as a short time "frame" in the Agile process 

model, which typically lasts from one to four weeks. 

VISHWANATH ARABATI - Corporate Trainer



AGILE METHODOLOGY

 division of the entire project into smaller parts 

 to minimize the project risk and to reduce the overall project delivery time 

requirements.

 development life cycle including planning, requirements analysis, design, 

coding, and testing before a working product is demonstrated to the 

client.

VISHWANATH ARABATI - Corporate Trainer



Agile Methodology 
Steps

 These are the deliverables found in Agile project management:
1. Product vision statement: A concise summary that vividly articulates the 

overarching goals and purpose of the product. This serves as the North 
Star, providing a guiding vision for the entire project team.

2. Product roadmap: Offering a high-level overview, the product roadmap 
delineates the key requirements essential for realizing the product 
vision. It acts as a strategic blueprint, aligning the team’s efforts with the 
broader objectives.

3. Product backlog: A comprehensive, prioritized list outlining all the 
necessary elements for the project’s success. The product backlog serves 
as a dynamic repository that evolves over time, capturing the evolving 
needs and priorities of the project.

4. Release plan: A structured timetable detailing the planned releases of 
the working product. This component provides a strategic timeline, 
ensuring that deliverables align with project goals and external 
milestones.

5. Sprint backlog: Focused on the current sprint, the sprint backlog 
encompasses user stories, goals, and tasks. It serves as a detailed action 
plan, guiding the team through the specific objectives of the ongoing 
iteration.

6. Increment: The tangible outcome of each sprint, the increment 
represents the functional aspects of the product presented to 
stakeholders. This not only facilitates continuous feedback but also 
allows for potential customer delivery, enhancing transparency and 
collaboration.

VISHWANATH ARABATI - Corporate Trainer



Phases of Agile Model:

 Following are the phases in the Agile model are as follows:

1. Requirements gathering

2. Design the requirements

3. Construction/ iteration

4. Testing/ Quality assurance

5. Deployment

6. Feedback

VISHWANATH ARABATI - Corporate Trainer



AGILE

 1. Requirements gathering: In this phase, you must define the

requirements. You should explain business opportunities and plan the

time and effort needed to build the project. Based on this information,

you can evaluate technical and economic feasibility.

 2. Design the requirements: When you have identified the project, work

with stakeholders to define requirements. You can use the user flow

diagram or the high-level UML diagram to show the work of new features

and show how it will apply to your existing system.

 3. Construction/ iteration: When the team defines the requirements, the

work begins. Designers and developers start working on their project,

which aims to deploy a working product. The product will undergo various

stages of improvement, so it includes simple, minimal functionality.

VISHWANATH ARABATI - Corporate Trainer



AGILE

 4. Testing: In this phase, the Quality Assurance team examines the

product's performance and looks for the bug.

 5. Deployment: In this phase, the team issues a product for the user's

work environment.

 6. Feedback: After releasing the product, the last step is feedback. In this,

the team receives feedback about the product and works through the

feedback.

VISHWANATH ARABATI - Corporate Trainer



Agile Manifesto Values:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

VISHWANATH ARABATI - Corporate Trainer



 This iterative approach offers several advantages:





• Early Value Delivery: Customers can start using and benefiting from

the software early in the development process, gaining tangible value 

with each iteration.

• Continuous Feedback: Frequent releases allow stakeholders to provide

feedback, guiding the development direction and ensuring that the final 

product aligns with their expectations.

• Risk Mitigation: By breaking the project into smaller chunks, Agile reduces

the risk associated with large-scale development, making it easier to adjust 

and adapt to changes.

• Increased Transparency: Teams and stakeholders have a clear view of

progress, making it easier to identify and address potential issues or delays.

VISHWANATH ARABATI - Corporate Trainer



Agile Manifesto 
Principles:

1. Customer satisfaction through early and continuous software 
delivery

2. Accommodate changing requirements throughout the development 
process

3. Frequent delivery of working software

4. Collaboration between the business stakeholders and developers 
throughout the project

5. Support, trust, and motivate the people involved

6. Enable face-to-face interactions

7. Working software is the primary measure of progress

8. Agile processes to support a consistent development pace

9. Attention to technical detail and design enhances agility

10.Simplicity

11.Self-organizing teams encourage great architectures, requirements, 
and designs

12.Regular reflections on how to become more effective

VISHWANATH ARABATI - Corporate Trainer



Agile Testing Methods:

• Scrum

• Crystal

• Dynamic Software Development Method(DSDM)

• Feature Driven Development(FDD)

• Lean Software Development

• eXtreme Programming(XP)

VISHWANATH ARABATI - Corporate Trainer



SCRUM

 Scrum

 SCRUM is an agile development process focused primarily on ways to

manage tasks in team-based development conditions.

 There are three roles in it, and their responsibilities are:

• Scrum Master: The scrum can set up the master team, arrange the

meeting and remove obstacles for the process

• Product owner: The product owner makes the product backlog,

prioritizes the delay and is responsible for the distribution of

functionality on each repetition.

• Scrum Team: The team manages its work and organizes the work to

complete the sprint or cycle.

VISHWANATH ARABATI - Corporate Trainer



 Silent features of Scrum

• Scrum is a light-weighted framework

• Scrum emphasizes self-organization

• Scrum is simple to understand

• Scrum framework helps the team to work together

• Lifecycle of Scrum

VISHWANATH ARABATI - Corporate Trainer



AGILE

VISHWANATH ARABATI - Corporate Trainer



Scrum Team Roles

• Product owner: The product expert and voice of stakeholders in Agile 
Scrum, the Product Owner defines the product vision, prioritizes features, 
and ensures development aligns with business goals. This role demands a 
deep understanding of market demands and a strategic vision.

• Development team: Comprising skilled professionals like developers, 
programmers, and designers, the Development Team drives product 
delivery. Emphasizing self-organization, collective ownership, and 
continuous improvement, they collaborate closely to transform 
requirements into tangible outcomes.

 Scrum master: The organized servant-leader integral to applying Scrum 
principles seamlessly. Beyond facilitating events and removing 
impediments, the Scrum Master nurtures a culture of continuous 
improvement, guides the team in embracing Agile values, and champions 
efficiency, fostering an environment for the Scrum framework to thrive.

VISHWANATH ARABATI - Corporate Trainer



Scrum Events

• Sprint: In Scrum, it’s a brief period for the development team to complete 
specific tasks, milestones, or deliverables—essentially dividing the project 
schedule into manageable time blocks not exceeding one month.

• Sprint planning: At the start of every Sprint, the entire Scrum team gathers 
to plan the upcoming sprint.

• Daily Scrum: A 15-minute daily meeting during the Sprint to discuss the 
previous day’s achievements and expectations for the next one.

• Sprint review: An informal end-of-sprint meeting where the Scrum team 
presents their Increment to stakeholders and discusses feedback.

• Sprint retrospective: A meeting where the Scrum team reflects on the 
previous Sprint and establishes improvements for the next one.

VISHWANATH ARABATI - Corporate Trainer



Scrum Artifacts

• Product backlog: Managed by the Product Owner, it lists all requirements 
for a viable product in order of priority. Includes features, functions, 
requirements, enhancements, and fixes authorizing changes in future 
releases.

• Sprint backlog: A list of tasks and requirements for the next Sprint, 
sometimes visualized using a Scrum task board in a ‘To Do, Doing, and 
Done’ format.

VISHWANATH ARABATI - Corporate Trainer



The ScrumMasters
responsibilities include

• Teach the Product Owner how to maximize return on investment (ROI), 
and meet his/her objectives through Scrum.

• Improve the lives of the development Team by facilitating creativity and 
empowerment.

• Improve the productivity of the development Team in any way possible.

• Improve the engineering practices and tools so that each increment of 
functionality is potentially shippable.

• Keep information about the Team’s progress up to date and visible to all 
parties.

VISHWANATH ARABATI - Corporate Trainer



Scrum: A Comprehensive Approach
Scrum is one of the most widely adopted Agile frameworks in the software
development industry. It provides a structured and comprehensive approach to 
managing projects, enabling teams to deliver high-quality software efficiently.

In this section, we will explore Scrum in detail, understanding its framework, key
roles, artifacts, ceremonies, and the benefits it brings to software development 
teams.

Overview of Scrum Framework
The Scrum framework is built on the foundation of Agile principles and is designed
to maximize productivity, foster collaboration, and deliver value to customers.

It consists of three essential elements:

Scrum Roles
Product Owner: The Product Owner is the voice of the customer and stakeholders.
They are responsible for defining and prioritizing the product backlog, ensuring 
that the development team is working on the most valuable features.
The Product Owner collaborates with stakeholders to gather requirements and
provide feedback on delivered increments.

VISHWANATH ARABATI - Corporate Trainer



Scrum Master: The Scrum Master acts as a facilitator and servant-leader for the
development team. Their primary role is to ensure that the Scrum framework is 
understood and followed correctly.
They remove any impediments that hinder the team's progress, promote a
collaborative team environment, and facilitate the various Scrum ceremonies.

Development Team: The Development Team consists of professionals who do the
actual work of delivering a potentially shippable product increment in each sprint. 
They are self-organizing, cross-functional, and collaborate closely to complete the 
tasks from the sprint backlog.

Scrum Artifacts
Product Backlog: The Product Backlog is a prioritized list of all the work items
required to complete the project. These items can include features, 
enhancements, bug fixes, and technical tasks.

The Product Owner continuously refines and updates the backlog based on feedback and
changing requirements.

Sprint Backlog: Before each sprint, the Development Team pulls a set of work
items from the Product Backlog and creates the Sprint Backlog.

The Sprint Backlog contains the tasks the team commits to completing during
the sprint. It provides transparency and a clear plan for the upcoming iteration.

Increment: The Increment represents the sum of all completed Product Backlog
items at the end of each sprint. It is a potentially shippable piece of software that 
should be in a usable state and adhere to the team's definition of "done."

VISHWANATH ARABATI - Corporate Trainer



Agile methodologies

 Scrum is one of the most widely used. 

 This is prescriptive framework.

 Scrum excels at managing iterative and incremental projects.

 Using the Scrum Agile methodology, a Product Owner sets a list of 
priorities, the Product Backlog, to be completed by a cross-functional 
team. 

 The team works to deliver “potentially shippable increments” of software 
in 2-4-week sprints, at the end of which the Product Backlog is reevaluated 
and prioritized.

 Agile teams like Scrum because it’s easy to follow and scale. 

 It enables management teams to identify problems early on and fosters 
strong, active collaboration between teams and colleagues.

VISHWANATH ARABATI - Corporate Trainer



When to use the Agile 
Model?

• When frequent changes are required.

• When a highly qualified and experienced team is available.

• When a customer is ready to have a meeting with a software team all

the time.

• When project size is small.

VISHWANATH ARABATI - Corporate Trainer



VISHWANATH ARABATI - Corporate Trainer

Criteria Agile Waterfall

Adaptability Extremely adaptable, allowing 
quick responses to changes 
and evolving technology.

More rigid structure, best 
suited for projects with a clear 
and unchanging vision.

Project Timeline Flexible timeline dependent 
on project development.

Fixed timeline planned from 
the start.

Project Phases Concurrent work on phases 
with tight deadlines, team-
driven direction.

Linear progression through 
defined stages, driven by 
project manager.

Flexibility in Direction Allows for changes even late 
in the process, suitable for 
evolving projects.

Less flexibility due to a 
predefined and unchanging 
vision.

Budget Flexibility Budget subject to change as 
project direction evolves.

Less flexible budget planned 
from the start.

Ideal for Software development where 
technology evolves rapidly.

Projects with a clear and 
specific vision that won't 
change.

Stakeholder Feedback Continuous stakeholder 
feedback is incorporated 
throughout.

Deliverables for each stage are 
clearly defined before moving 
on.



 When to use the Agile Methodology?

 If you want to know when to use the Agile methodology, then it is 
particularly well-suited for projects and organizations where the following 
conditions or needs are present:

1.Unclear or Changing Requirements: Agile is great for projects with 
requirements that aren’t well-defined or might change.

2.Complex Projects: It’s good for big, complex projects by breaking them 
into smaller pieces.

3.Customer Focus: Use Agile when making customers happy is a priority and 
you want to involve them throughout.

4.Quick Time-to-Market: If you need to get your product out fast, Agile can 
help.

5.Small to Medium Teams: Agile works well for teams of a few to a few 
dozen people.

6.Improvement: Agile fosters a culture of always getting better over time.

VISHWANATH ARABATI - Corporate Trainer



6.Team Skills: It’s best when you have a mix of skills in your team, like 
development, testing, design, and more.

7.Collaboration: Agile promotes working together and open communication.

8.Regular Updates: If you want to check progress often and make changes 
as needed.

9.Transparency: Agile emphasizes being open and clear with everyone 
involved in the project.

10.Risk Control: It helps manage risks by tackling issues as they come up.

11.Innovation: If you encourage trying new things and learning from 
experience, Agile supports that.

12.Continuous

VISHWANATH ARABATI - Corporate Trainer



VISHWANATH ARABATI - Corporate Trainer



• Sprint: A Sprint is a time box of one month or less. A new Sprint starts 
immediately after the completion of the previous Sprint. Release: When 
the product is completed, it goes to the Release stage.

• Sprint Review: If the product still has some non-achievable features, it will 
be checked in this stage and then passed to the Sprint Retrospective stage.

• Sprint Retrospective: In this stage quality or status of the product is 
checked. Product Backlog: According to the prioritize features the product 
is organized.

• Sprint Backlog: Sprint Backlog is divided into two parts Product assigned 
features to sprint and Sprint planning meeting.

VISHWANATH ARABATI - Corporate Trainer



 Advantage of Scrum framework

• Scrum framework is fast moving and money efficient.

• Scrum framework works by dividing the large product into small sub-
products. It’s like a divide and conquer strategy

• In Scrum customer satisfaction is very important.

• Scrum is adaptive in nature because it have short sprint.

• As Scrum framework rely on constant feedback therefore the quality of 
product increases in less amount of time

VISHWANATH ARABATI - Corporate Trainer



VISHWANATH ARABATI - Corporate Trainer

Parameters Agile Methodology Traditional Approach

Definition
Agile is like building a flexible 
and adaptable treehouse in 

stages.

Traditional approaches are like 
constructing a house with a 

detailed blueprint.

Chronology of operations
Testing and development 
processes are performed 

concurrently.

Testing is done once the 
development phase is 

completed.

Organizational structure
It follows iterative 

organizational structure.
It follows linear organizational 

structure.

Communication
Agile encourages face-to-face 

communication.

Traditional approach 
encourages formal 

communication.

Number of phases It consists of only three phases. It consists of five phases.

Development cost Less using this methodology. More using this methodology.

User requirements
Clearly defined user 

requirements before coding.
Requires interactive user 

inputs.



Scrum Ceremonies

Sprint Planning: At the beginning of each sprint, the Product Owner and
Development Team collaborate in the Sprint Planning meeting. They 
discuss and agree on the sprint goal, select the top items from the Product 
Backlog, and create the Sprint Backlog with associated tasks.
Daily Standup (Daily Scrum): The Daily Standup is a brief daily 
meeting where the Development Team synchronizes their work. Each
team member shares what they worked on the previous day, what they
plan to work on that day, and any impediments they are facing.

Sprint Review: At the end of each sprint, the team holds a Sprint Review
meeting to demonstrate the completed Increment to stakeholders. 
Feedback is gathered, and the Product Backlog is updated based on the 
stakeholders' input.
Sprint Retrospective: Following the Sprint Review, the team conducts
the Sprint Retrospective to reflect on the previous sprint. They identify 
what went well, what could be improved, and define actionable items to 
enhance their processes in the upcoming sprints.

Benefits and Advantages of Scrum
Scrum offers a number of benefits that contribute to its popularity and success in
Agile software development:

VISHWANATH ARABATI - Corporate Trainer



Transparency: The use of visible backlogs, frequent progress updates, and regular meetings ensures 

transparency among team members and stakeholders. This fosters a shared understanding of the 

project's status.

Adaptability: Scrum's iterative nature allows teams to adapt to changing requirements and priorities. 

This ensures that the delivered product remains aligned with the customer's needs.

Continuous Improvement: The Sprint Retrospective encourages continuous improvement by 

providing a platform for the team to reflect on their practices and identify opportunities for 

enhancement.

Early Value Delivery: The focus on delivering potentially shippable increments at the end of each 

sprint allows customers to see tangible progress early in the development process.

Customer Collaboration: The involvement of the Product Owner and regular Sprint Reviews promote 

active collaboration with customers, resulting in a product that better meets their expectations.

Scrum Challenges and How to Overcome Them

While Scrum is highly effective, it is not without its challenges. Some common hurdles that teams
may encounter include:

VISHWANATH ARABATI - Corporate Trainer



1. Overcommitment: Teams might take on too much work in a sprint, leading to

incomplete tasks and a compromised Increment. Regularly evaluating capacity and 

being realistic about commitments can help avoid this pitfall.

2. Lack of Empowerment: If team members are not empowered to make decisions 

and are overly dependent on the Scrum Master, the efficiency and effectiveness of

the team may suffer. Encouraging self-organization and trust within the team can 

mitigate this challenge.

3. Incomplete Definition of "Done": Ambiguity about what constitutes a "done"

user story can lead to misunderstandings and incomplete work. Clearly defining

and agreeing upon the team's "definition of done" is crucial for consistent delivery.

4. roduct OwnerAvailability: Insufficient availability of the Product Owner can slow

down decision- making and result in unclear requirements. Maintaining constant

communication and involvement with

 the team can help alleviate this issue.

VISHWANATH ARABATI - Corporate Trainer



 Key elements of Scrum project management include:

• Sprints: Short, time-boxed work cycles where the team focuses on
completing a set of deliverables from the product backlog. These cycles 
typically last 1-4 weeks and keep the project focused and adaptable

• Daily stand-up meetings: Also known as daily scrums, these are brief
meetings (usually 15-20 minutes) held each day during a sprint. The 
team uses this time to discuss progress, identify roadblocks, and ensure 
everyone is aligned.

• Product backlog: This is a prioritized list of features, requirements, and fixes
for the entire project. It’s a living document that evolves throughout the 
project as new information emerges

• Sprint backlog: A subset of the product backlog, it includes the specific list 
of items the development team will work on during a particular sprint. This
list is created during sprint planning and reflects what the team believes they 
can accomplish in that timeframe

• Sprint review meetings: Held at the end of each sprint, the review meeting
is an opportunity for the team to showcase what they’ve completed and 
gather feedback from stakeholders

• Sprint retrospectives: Another meeting held at the conclusion of a sprint, the
retrospective is a chance for the team to reflect on what went well, what 
didn’t, and how they can improve their process for the next sprint

VISHWANATH ARABATI - Corporate Trainer

https://clickup.com/blog/scrum-project-management/


VISHWANATH ARABATI - Corporate Trainer



Why create user stories?

For development teams new to agile, user stories sometimes seem like an
added step. Why not just break the big project (the epic) into a series of 
steps and get on with it? But stories give the team important context and 
associate tasks with the value those tasks bring.

User stories serve a number of key benefits:

Stories keep the focus on the user. A to-do list keeps the team
focused on tasks that need to be checked off, but a collection of
stories keeps the team focused on solving problems for real users.

Stories enable collaboration. With the end goal defined, the team can
work together to decide how best to serve the user and meet that goal.
Stories drive creative solutions. Stories encourage the team to think
critically and creatively about how to best solve for an end goal.

Stories create momentum. With each passing story, the
development team enjoys a small challenge and a small win, 
driving momentum.

VISHWANATH ARABATI - Corporate Trainer

https://www.atlassian.com/en/agile/project-management/epics


VISHWANATH ARABATI - Corporate Trainer



How to write user stories

Consider the following when writing user stories:

Definition of “done” — The story is generally “done” when the user
can complete the outlined task, but make sure to define what that is.
Outline subtasks or tasks — Decide which specific steps need to
be completed and who is responsible for each of them.

User personas — For whom? If there are multiple end users, consider making
multiple stories.

Ordered Steps — Write a story for each step in a larger process.

Listen to feedback — Talk to your users and capture the problem or
need in their words. No need to guess at stories when you can source 
them from your customers.
Time — Time is a touchy subject. Many development teams avoid 
discussions of time altogether, relying instead on their estimation 
frameworks. Since stories should be completable in one sprint, stories
that might take weeks or months to complete should be broken up into
smaller stories or should be considered their own epic.

VISHWANATH ARABATI - Corporate Trainer



VISHWANATH ARABATI - Corporate Trainer


